Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression.
نویسندگان
چکیده
Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.
منابع مشابه
Quercetin and Quercetin-Rich Red Onion Extract Alter Pgc-1α Promoter Methylation and Splice Variant Expression
Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and ...
متن کاملDevelopment of insulin resistance in mice lacking PGC-1α in adipose tissues.
Reduced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression and mitochondrial dysfunction in adipose tissue have been associated with obesity and insulin resistance. Whether this association is causally involved in the development of insulin resistance or is only a consequence of this condition has not been clearly determined. Here we studied the effects of adipose-s...
متن کاملPGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion.
Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid m...
متن کاملPGC-1α/β upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations
We have studied the functional effects of nonsense mitochondrial DNA (mtDNA) mutations in the COXI and ND5 genes in a colorectal tumor cell line. Surprisingly, these cells had an efficient oxidative phosphorylation (OXPHOS); however, when mitochondria from these cells were transferred to an osteosarcoma nuclear background (osteosarcoma cybrids), the rate of respiration markedly declined suggest...
متن کاملDownregulation of PGC-1α Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice
Background/Objectives. Obesity and metabolic syndrome and associated adiposity are a systemic condition characterized by increased mitochondrial dysfunction, inflammation, and inhibition of antioxidant genes, HO-1, and EETs levels. We postulate that EETs attenuate adiposity by stimulating mitochondrial function and induction of HO-1 via activation of PGC-1α in adipose and hepatic tissue. Method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 305 11 شماره
صفحات -
تاریخ انتشار 2013